Popis postavljenih simbola teorije skupova i vjerojatnosti.
| Simbol | Naziv simbola | Značenje / definicija |
Primjer |
|---|---|---|---|
| {} | postaviti | zbirka elemenata | A = {3,7,9,14}, B = {9,14,28} |
| | | takav da | tako da | A = { x | x ∈ |
| A⋂B | križanje | objekti koji pripadaju skupu A i skupu B | A ⋂ B = {9,14} |
| A⋃B | unija | objekti koji pripadaju skupu A ili skupu B | A ⋃ B = {3,7,9,14,28} |
| A⊆B | podskup | A je podskup B. B. skup A uključen je u skup B. | {9,14,28} ⊆ {9,14,28} |
| A⊂B | pravilan podskup / strogi podskup | A je podskup B, ali A nije jednako B. | {9,14} ⊂ {9,14,28} |
| A⊄B | nije podskup | skup A nije podskup skupa B | {9,66} ⊄ {9,14,28} |
| A⊇B | superset | A je super skup B. skup A uključuje skup B | {9,14,28} ⊇ {9,14,28} |
| A⊃B | pravilan superset / strogi superset | A je super skup B, ali B nije jednako A. | {9,14,28} ⊃ {9,14} |
| A⊅B | nije superset | skup A nije nadskup skupa B | {9,14,28} ⊅ {9,66} |
| 2 A | set snage | sve podskupine A | |
| set snage | sve podskupine A | ||
| A = B | jednakost | oba skupa imaju iste članove | A = {3,9,14}, B = {3,9,14}, A = B |
| A c | upotpuniti, dopuna | svi objekti koji ne pripadaju skupu A | |
| A ' | upotpuniti, dopuna | svi objekti koji ne pripadaju skupu A | |
| A \ B | relativna dopuna | predmeti koji pripadaju A, a ne B | A = {3,9,14}, B = {1,2,3}, A \ B = {9,14} |
| AB | relativna dopuna | predmeti koji pripadaju A, a ne B | A = {3,9,14}, B = {1,2,3}, A - B = {9,14} |
| A∆B | simetrična razlika | objekti koji pripadaju A ili B, ali ne i njihovom presjeku | A = {3,9,14}, B = {1,2,3}, A ∆ B = {1,2,9,14} |
| A⊖B | simetrična razlika | objekti koji pripadaju A ili B, ali ne i njihovom presjeku | A = {3,9,14}, B = {1,2,3}, A ⊖ B = {1,2,9,14} |
| a ∈A | element od, pripada |
postavljeno članstvo | A = {3,9,14}, 3 ∈ A |
| x ∉A | nije element | nema postavljenog članstva | A = {3,9,14}, 1 A |
| ( a , b ) | naručeni par | zbirka od 2 elementa | |
| A × B | kartezijanski proizvod | skup svih poredanih parova iz A i B | |
| | A | | kardinalnost | broj elemenata skupa A | A = {3,9,14}, | A | = 3 |
| #A | kardinalnost | broj elemenata skupa A | A = {3,9,14}, # A = 3 |
| | | okomita traka | takav da | A = {x | 3 <x <14} |
| ℵ 0 | aleph-null | beskonačna kardinalnost skupa prirodnih brojeva | |
| ℵ 1 | aleph-one | kardinalnost postavljenih brojivih rednih brojeva | |
| Ø | prazan set | Ø = {} | A = Ø |
| univerzalni set | skup svih mogućih vrijednosti | ||
| ℕ 0 | postavljeni prirodni brojevi / cijeli brojevi (s nulom) | 0 ∈ |
|
| ℕ 1 | postavljeni prirodni brojevi / cijeli brojevi (bez nule) | 6 ∈ |
|
| ℤ | postavljeni cjelobrojni brojevi | -6 ∈ |
|
| ℚ | skup racionalnih brojeva | 2/6 ∈ |
|
| ℝ | postavljeni realni brojevi | 6,343434 ∈ |
|
| ℂ | skup kompleksnih brojeva | 6 + 2 i ∈ |
Advertising