Is é logarithm bonn b uimhir an t-easpónant a theastaíonn uainn an bonn a ardú d’fhonn an uimhir a fháil.
Nuair a ardaítear b go bhfuil cumhacht y cothrom le x:
b y = x
Ansin tá bun logarithm x cothrom le y:
log b ( x ) = y
Mar shampla nuair:
2 4 = 16
Ansin
log 2 (16) = 4
An fheidhm logartamach,
y = log b ( x )
is í feidhm inbhéartach na feidhme easpónantúla,
x = b y
Mar sin má ríomhtar feidhm easpónantúil logarithm x (x/ 0),
f ( f -1 ( x )) = b log b ( x ) = x
Nó má ríomhtar logarithm fheidhm easpónantúil x,
f -1 ( f ( x )) = log b ( b x ) = x
Is logarithm nádúrtha logarithm nádúrtha don bhonn e:
ln ( x ) = log e ( x )
Nuair is é tairiseach an uimhir:
nó
Féach: Logarithm nádúrtha
Ríomhtar an logarithm inbhéartach (nó frith-logarithm) tríd an mbonn b a ardú go dtí an logarithm y:
x = log -1 ( y ) = b y
Tá an fhoirm bhunúsach ag an bhfeidhm logartamach:
f ( x ) = log b ( x )
Ainm na rialach | Riail |
---|---|
Riail táirge logarithm |
log b ( x ∙ y ) = log b ( x ) + log b ( y ) |
Riail chomhrann logarithm |
log b ( x / y ) = log b ( x ) - log b ( y ) |
Riail cumhachta logarithm |
log b ( x y ) = y ∙ log b ( x ) |
Riail lasc bonn logarithm |
log b ( c ) = 1 / log c ( b ) |
Riail maidir le hathrú bonn Logarithm |
log b ( x ) = log c ( x ) / log c ( b ) |
Díorthach logarithm |
f ( x ) = log b ( x ) ⇒ f ' ( x ) = 1 / ( x ln ( b )) |
Comhtháite de logarithm |
∫ log b ( x ) dx = x ∙ (log b ( x ) - 1 / ln ( b ) ) + C |
Logarithm d’uimhir dhiúltach |
tá log b ( x ) neamhshainithe nuair a bhíonn x ≤ 0 |
Logarithm de 0 |
tá log b (0) neamhshainithe |
![]() |
|
Logarithm de 1 |
log b (1) = 0 |
Logarithm an bhoinn |
log b ( b ) = 1 |
Logarithm an éigríochta |
log log b ( x ) = ∞, nuair a bhíonn x → ∞ |
Féach: Rialacha logarithm
Is é logarithm iolrú x agus y suim logarithm x agus logarithm y.
log b ( x ∙ y ) = log b ( x ) + log b ( y )
Mar shampla:
log 10 (3 ∙ 7) = log 10 (3) + log 10 (7)
Is é logarithm roinn x agus y an difríocht idir logarithm x agus logarithm y.
log b ( x / y ) = log b ( x ) - log b ( y )
Mar shampla:
logáil 10 (3 / 7) = logáil 10 (3) - logáil 10 (7)
Is é logarithm x a ardaíodh do chumhacht y ná y logarithm x.
log b ( x y ) = y ∙ log b ( x )
Mar shampla:
log 10 (2 8 ) = 8 ∙ log 10 (2)
Is é 1 bun logarithm c ná 1 roinnte ar an mbunachar logarithm de b.
log b ( c ) = 1 / log c ( b )
Mar shampla:
log 2 (8) = 1 / log 8 (2)
Is é bun logarithm x bun c logarithm de x arna roinnt ar an mbunachar logarithm de b.
log b ( x ) = log c ( x ) / log c ( b )
Mar shampla, chun log 2 (8) a ríomh san áireamhán, caithfimid an bonn a athrú go 10:
log 2 (8) = log 10 (8) / log 10 (2)
Féach: riail um athrú bonn log
Tá bun logarithm fíor x nuair nach bhfuil x <= 0 sainmhínithe nuair a bhíonn x diúltach nó cothrom le nialas:
tá log b ( x ) neamhshainithe nuair a bhíonn x ≤ 0
Féach: log de uimhir dhiúltach
Tá bun logarithm nialas neamhshainithe:
tá log b (0) neamhshainithe
Is í teorainn an logarithm bonn b de x, nuair a bhíonn x ag druidim le nialas, lúide an Infinity:
Féach: log de nialas
Is é náid logarithm bonn b:
log b (1) = 0
Mar shampla, is é nialas bunachar dhá logarithm amháin:
log 2 (1) = 0
Féach: logáil ceann
Tá teorainn an logarithm bonn b de x, nuair a bhíonn x ag druidim leis an éigríocht, cothrom leis an infinacht:
log log b ( x ) = ∞, nuair a bhíonn x → ∞
Féach: log an éigríochta
Is é bun logarithm b:
log b ( b ) = 1
Mar shampla, is é ceann logarithm dhá cheann:
log 2 (2) = 1
Cathain
f ( x ) = log b ( x )
Ansin díorthach f (x):
f ' ( x ) = 1 / ( x ln ( b ))
Féach: díorthach log
Cuid dhílis logarithm x:
∫ log b ( x ) dx = x ∙ (log b ( x ) - 1 / ln ( b ) ) + C
Mar shampla:
∫ log 2 ( x ) dx = x ∙ (log 2 ( x ) - 1 / ln (2) ) + C
log 2 ( x ) ≈ n + ( x / 2 n - 1),
Maidir le huimhir chasta z:
z = re iθ = x + iy
Is é an logarithm casta (n = ...- 2, -1,0,1,2, ...):
Log z = ln ( r ) + i ( θ + 2nπ ) = ln (√ ( x 2 + y 2 )) + i · arctan ( y / x ))
Faigh x do
log 2 ( x ) + log 2 ( x -3) = 2
Ag baint úsáide as riail an táirge:
log 2 ( x ∙ ( x -3)) = 2
An fhoirm logarithm a athrú de réir an tsainmhínithe logarithm:
x ∙ ( x -3) = 2 2
Nó
x 2 -3 x -4 = 0
An chothromóid chearnach a réiteach:
x 1,2 = [3 ± √ (9 + 16)] / 2 = [3 ± 5] / 2 = 4, -1
Ós rud é nach sainmhínítear an logarithm d’uimhreacha diúltacha, is é an freagra:
x = 4
Faigh x do
log 3 ( x +2) - log 3 ( x ) = 2
Ag baint úsáide as an riail chomhrann:
log 3 (( x +2) / x ) = 2
An fhoirm logarithm a athrú de réir an tsainmhínithe logarithm:
( x +2) / x = 3 2
Nó
x +2 = 9 x
Nó
8 x = 2
Nó
x = 0.25
ní shainmhínítear log (x) le haghaidh fíorluachanna neamh-dhearfacha x:
x | logáil 10 x | log 2 x | log e x |
---|---|---|---|
0 | neamhshainithe | neamhshainithe | neamhshainithe |
0 + | - ∞ | - ∞ | - ∞ |
0.0001 | -4 | -13.287712 | -9.210340 |
0.001 | -3 | -9.965784 | -6.907755 |
0.01 | -2 | -6.643856 | -4.605170 |
0.1 | -1 | -3.321928 | -2.302585 |
1 | 0 | 0 | 0 |
2 | 0.301030 | 1 | 0.693147 |
3 | 0.477121 | 1.584963 | 1.098612 |
4 | 0.602060 | 2 | 1.386294 |
5 | 0.698970 | 2.321928 | 1.609438 |
6 | 0.778151 | 2.584963 | 1.791759 |
7 | 0.845098 | 2.807355 | 1.945910 |
8 | 0.903090 | 3 | 2.079442 |
9 | 0.954243 | 3.169925 | 2.197225 |
10 | 1 | 3.321928 | 2.302585 |
20 | 1.301030 | 4.321928 | 2.995732 |
30 | 1.477121 | 4.906891 | 3.401197 |
40 | 1.602060 | 5.321928 | 3.688879 |
50 | 1.698970 | 5.643856 | 3.912023 |
60 | 1.778151 | 5.906991 | 4.094345 |
70 | 1.845098 | 6.129283 | 4.248495 |
80 | 1.903090 | 6.321928 | 4.382027 |
90 | 1.954243 | 6.491853 | 4.499810 |
100 | 2 | 6.643856 | 4.605170 |
200 | 2.301030 | 7.643856 | 5.298317 |
300 | 2.477121 | 8.228819 | 5.703782 |
400 | 2.602060 | 8.643856 | 5.991465 |
500 | 2.698970 | 8.965784 | 6.214608 |
600 | 2.778151 | 9.228819 | 6.396930 |
700 | 2.845098 | 9.451211 | 6.551080 |
800 | 2.903090 | 9.643856 | 6.684612 |
900 | 2.954243 | 9.813781 | 6.802395 |
1000 | 3 | 9.965784 | 6.907755 |
10000 | 4 | 13.287712 | 9.210340 |
Advertising