Is é logarithm nádúrtha an logarithm go bun e uimhir.
Cathain
e y = x
Ansin bun e logarithm de x is
ln ( x ) = log e ( x ) = y
Is í an e tairiseach nó uimhir Euler:
e ≈ 2.71828183
Is í an fheidhm logartamach nádúrtha ln (x) feidhm inbhéartach na feidhme easpónantúla e x .
Le haghaidh x/ 0,
f ( f -1 ( x )) = e ln ( x ) = x
Nó
f -1 ( f ( x )) = ln ( e x ) = x
| Ainm na rialach | Riail | Sampla | 
|---|---|---|
| Riail táirge | ln ( x ∙ y ) = ln ( x ) + ln ( y ) | ln (3 ∙ 7) = ln (3) + ln (7) | 
| Riail go leor | ln ( x / y ) = ln ( x ) - ln ( y ) | ln (3 / 7) = ln (3) - ln (7) | 
| Riail chumhachta | ln ( x y ) = y ∙ ln ( x ) | ln (2 8 ) = 8 ∙ ln (2) | 
| díorthach ln | f ( x ) = ln ( x ) ⇒ f ' ( x ) = 1 / x | |
| ln lárnach | ∫ ln ( x ) dx = x ∙ (ln ( x ) - 1) + C. | |
| ln d’uimhir dhiúltach | Tá ln ( x ) neamhshainithe nuair a bhíonn x ≤ 0 | |
| ln de nialas | Tá ln (0) neamhshainithe | |
|  | ||
| ln de cheann | ln (1) = 0 | |
| ln an éigríochta | lim ln ( x ) = ∞, nuair a bhíonn x → ∞ | |
| Céannacht Euler | ln (-1) = i π | 
Is é logarithm iolrú x agus y suim logarithm x agus logarithm y.
log b ( x ∙ y ) = log b ( x ) + log b ( y )
Mar shampla:
log 10 (3 ∙ 7) = log 10 (3) + log 10 (7)
Is é logarithm roinn x agus y an difríocht idir logarithm x agus logarithm y.
log b ( x / y ) = log b ( x ) - log b ( y )
Mar shampla:
logáil 10 (3 / 7) = logáil 10 (3) - logáil 10 (7)
Is é logarithm x a ardaíodh do chumhacht y ná y logarithm x.
log b ( x y ) = y ∙ log b ( x )
Mar shampla:
log 10 (2 8 ) = 8 ∙ log 10 (2)
Is é díorthach na feidhme logarithm nádúrtha an fheidhm chómhalartach.
Cathain
f ( x ) = ln ( x )
Is é díorthach f (x):
f ' ( x ) = 1 / x
Tugtar an chuid dhílis den fheidhm logartamach nádúrtha trí:
Cathain
f ( x ) = ln ( x )
Is é gné dhílis f (x):
∫ f ( x ) dx = ∫ ln ( x ) dx = x ∙ (ln ( x ) - 1) + C
Tá logarithm nádúrtha nialas neamhshainithe:
Tá ln (0) neamhshainithe
Is í an teorainn gar do 0 de logarithm nádúrtha x, nuair a bhíonn x ag druidim le nialas, lúide an Infinity:

Is é ná logarithm nádúrtha ceann amháin ná nialas:
ln (1) = 0
Tá teorainn logarithm nádúrtha an éigríochta, nuair a bhíonn x ag druidim leis an éigríocht cothrom leis an infinacht:
lim ln ( x ) = ∞, nuair a bhíonn x → ∞
Maidir le huimhir chasta z:
z = re iθ = x + iy
Is é an logarithm casta (n = ...- 2, -1,0,1,2, ...):
Log z = ln ( r ) + i ( θ + 2nπ ) = ln (√ ( x 2 + y 2 )) + i · arctan ( y / x ))
Ní shainmhínítear ln (x) le haghaidh fíorluachanna neamh-dhearfacha x:

| x | ln x | 
|---|---|
| 0 | neamhshainithe | 
| 0 + | - ∞ | 
| 0.0001 | -9.210340 | 
| 0.001 | -6.907755 | 
| 0.01 | -4.605170 | 
| 0.1 | -2.302585 | 
| 1 | 0 | 
| 2 | 0.693147 | 
| e ≈ 2.7183 | 1 | 
| 3 | 1.098612 | 
| 4 | 1.386294 | 
| 5 | 1.609438 | 
| 6 | 1.791759 | 
| 7 | 1.945910 | 
| 8 | 2.079442 | 
| 9 | 2.197225 | 
| 10 | 2.302585 | 
| 20 | 2.995732 | 
| 30 | 3.401197 | 
| 40 | 3.688879 | 
| 50 | 3.912023 | 
| 60 | 4.094345 | 
| 70 | 4.248495 | 
| 80 | 4.382027 | 
| 90 | 4.499810 | 
| 100 | 4.605170 | 
| 200 | 5.298317 | 
| 300 | 5.703782 | 
| 400 | 5.991465 | 
| 500 | 6.214608 | 
| 600 | 6.396930 | 
| 700 | 6.551080 | 
| 800 | 6.684612 | 
| 900 | 6.802395 | 
| 1000 | 6.907755 | 
| 10000 | 9.210340 | 
Advertising